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We study an individual-based predator-prey model of biological coevolution, using linear stability analysis
and large-scale kinetic Monte Carlo simulations. The model exhibits approximate 1/ f noise in diversity and
population-size fluctuations, and it generates a sequence of quasisteady communities in the form of simple food
webs. These communities are quite resilient toward the loss of one or a few species, which is reflected in
different power-law exponents for the durations of communities and the lifetimes of species. The exponent for
the former is near −1, while the latter is close to −2. Statistical characteristics of the evolving communities,
including degree �predator and prey� distributions and proportions of basal, intermediate, and top species,
compare reasonably with data for real food webs.
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I. INTRODUCTION

Biological evolution presents many problems concerning
interacting multientity systems far from equilibrium that are
well suited for methods from nonequilibrium statistical phys-
ics �1,2�. Among these are questions concerning the dynam-
ics of the emergence and extinction of species on macro-
evolutionary time scales �3–5�. Traditionally it has been
common to treat ecological and evolutionary processes on
very different time scales. However, it has recently been re-
alized that evolution often can take place on short time
scales, comparable to those of ecological processes �6–9�. A
well-known example of very rapid evolution is provided by
the cichlid fishes of East Africa �10�. Several models have
therefore been proposed that, while spanning disparate scales
of temporal and taxonomic resolution, consider the complex
problem of coevolution of species in a fitness landscape that
constantly changes with the composition of the community.
Early contributions were simulations of parapatric and sym-
patric speciation �11� and the coupled NK model with popu-
lation dynamics �12,13�. More recent work includes the We-
bworld model �8,14,15�, the tangled-nature model �16–18�,
and simplified versions of the latter �19–21�, as well as net-
work models �22,23�. Recently, large individual-based simu-
lations have also been performed of parapatric and sympatric
speciation �24,25� and of adaptive radiation �26�.

Many of the models discussed above are deliberately
quite simple, aiming to elucidate universal features that are
largely independent of the finer details of the ecological in-
teractions and the evolutionary mechanisms. Such features
may include lifetime distributions for species and communi-
ties, as well as other aspects of extinction statistics, statistical
properties of fluctuations in diversity and population sizes,
and the structure and dynamics of food webs that develop
and change with time.

In the present paper we continue our study of a simplified
version of the tangled-nature model. In the early studies of
this individual-based model of coevolution �19–21�, the in-
terspecies interactions, which are described by an interaction
matrix M �27�, were random and could produce any combi-
nation of pair interactions: favorable-favorable, deleterious-
deleterious, or favorable-deleterious. Under those conditions
the model was found to evolve through a sequence of qua-
sistable communities, in which all species interact via mutu-
ally favorable interactions, i.e., mutualistic or symbiotic
communities. For that reason we shall hereafter refer to that
version of the model as the mutualistic model. Here we in-
stead concentrate on a version that specifically describes the
evolution of predator-prey communities. This restriction is
enforced by means of an antisymmetric interaction matrix, so
that an interaction that is favorable for one member of a pair
is deleterious for the other, and vice versa. Many aspects of
the dynamics of this predator-prey model are similar to the
mutualistic model, such as approximate 1/ f noise in species
diversity and population sizes, and power-law distributions
of the durations of communities and the lifetimes of species.
However, some of the power-law exponents are different,
and, most importantly, the predator-prey model produces
communities that take the form of simple food webs. It also
shares with the mutualistic model the property that mean
population sizes and stability properties of fixed-point com-
munities can be calculated exactly in the absence of muta-
tions. Comparisons of some aspects of the predator-prey
model �with a much smaller number of potential species than
used here� to those of the mutualistic model have been pre-
sented in Refs. �28,29�. The focus of the present paper is a
much more detailed discussion of the dynamics and the
structure of the resulting food webs �including comparison
with real food webs� for the predator-prey model with a large
number of potential species. For this purpose we use both
exact linear-stability analysis and large-scale kinetic Monte
Carlo simulations. In particular, we wish to study the fluc-
tuations in the statistically stationary state that develops for
long times. A motivation is the hope that understanding of
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these stationary-state fluctuations can provide information
about the system’s sensitivity to external perturbations in a
way analogous to a fluctuation-dissipation relation �30�. We
therefore carry out very long simulations.

The rest of this paper is organized as follows. The model
is presented in Sec. II. Exact linear-stability analysis is per-
formed in Sec. III, including fixed-point population sizes in
Sec. III A and stability considerations in Sec. III B. Numeri-
cal results are presented in Sec. IV, including species abun-
dance distributions and time series of diversities and popula-
tion sizes �Sec. IV A�, power spectral densities �Sec. IV B�,
species lifetimes �Sec. IV C�, durations of evolutionarily
quiet and active periods �Sec. IV D�, and community struc-
ture and stability with comparison with real food webs �Sec.
IV E�. Our conclusions are summarized in Sec. V, and the
method used to calculate the interaction matrices for systems
with a large number of potential species is explained in the
Appendix.

II. MODEL

The model considered here is a version of the macroevo-
lution model introduced by Rikvold and Zia �19� as a sim-
plification of the tangled-nature model of Jensen and co-
workers �16–18�. In this version, the interspecies interactions
are constrained to represent a pure predator-prey system. As
in Ref. �19�, selection is provided by the reproduction rates
in an individual-based, simplified multispecies population-
dynamics model with nonoverlapping generations. This
interacting birth-death process is augmented to enable the
evolution of new species by a mutation mechanism. The mu-
tations act on a haploid, binary “genome” of length L, as
introduced by Eigen for molecular evolution �31,32�. This bit
string defines the species, which are identified by the integer
label I� �0,2L−1�. Typically, only a few of these 2L poten-
tial species are resident in the community at any one time.

During reproduction, an offspring individual may undergo
a mutation that flips a randomly chosen gene �0→1 or 1
→0� with a small probability �. The mutation thus corre-
sponds to diffusional moves from corner to corner along the
edges of an L-dimensional hypercube �33,34�. A mutated in-
dividual is assumed to belong to a different species than its
parent, with different properties. Genotype and phenotype
are thus in one-to-one correspondence in this model. This is
clearly a highly idealized picture, and it is introduced to
maximize the pool of different species available within the
computational resources. This picture is justified by a large-
scale computational study of the mutualistic version of the
model studied in Ref. �19�, in which species that differ by as
many as L /2 bits have correlated properties �21�. Remark-
ably, this study reveals that the more realistic, correlated
model has long-time dynamical properties very similar to the
uncorrelated model.

The reproduction probability PI�t� for an individual of
species I in generation t depends on the individual’s ability to
utilize the amount R of available external resources, and on
its interactions with the population sizes nJ�t� of all the spe-
cies present in the community at that time. The dependence
of PI on the set of nJ is determined by an interaction matrix

M �27� with off-diagonal elements MIJ that are continuously
and symmetrically distributed on the interval �−1, +1� in a
way defined specifically in the next paragraph. The elements
of M are chosen randomly at the beginning of each simula-
tion run and are subsequently kept constant throughout the
run �quenched randomness�. �For a discussion of how the
matrix elements are created for L�13, in which case the
2L�2L matrix does not fit into the memory of a standard
workstation, see the Appendix. This method leads to a distri-
bution that is triangular on �−1, +1�.�

In contrast to our previously studied model �19–21�, in
which the interaction matrix has no particular structure, the
predator-prey dynamics is enforced by the requirement that
the off-diagonal part of M must be antisymmetric. Thus, if
MIJ�0 and MJI�0, then species I is the predator and J the
prey, and vice versa. In order to keep the connectance of the
resulting communities consistent with food webs observed in
nature �35,36� the �MIJ ,MJI� pairs are chosen nonzero with
probability c=0.1. The nonzero elements in the upper tri-
angle of M are chosen independently from the triangular
distribution on �−1, +1�, described in the Appendix. Self-
competition is included in the model by choosing the diago-
nal elements of M randomly and uniformly from �−1,0�.

The reproduction probability for species I, PI�t�, depends
on R and the set �nJ�t�� through the nonlinear form

PI�t� =
1

1 + exp�− �I„R,�nJ�t��…�
, �1�

where

�I„R,�nJ�t��… = − bI + �IR/Ntot + �
J

MIJnJ�t�/Ntot. �2�

Here bI is the “cost” of reproduction for species I �always
positive�, and �I �positive for primary producers or autotro-
phs, and zero for consumers or heterotrophs� is the ability of
individuals of species I to utilize the external resource R. The
latter is renewed at the same level every generation and does
not have independent dynamics. The total population size is
Ntot�t�=�JnJ�t�. �In contrast, the total number of species
present in generation t �the species richness� will be defined
as N�t�.� The population-limiting reproduction costs bI are
chosen randomly and uniformly from the interval �0, +1�.
Only a proportion p of the 2L potential species are producers
that can directly utilize the resource. �For the numerical data
shown here, we use p=0.05.� Thus, with probability �1− p�
the resource coupling �I=0, representing consumers, while
with probability p the �I are independently and uniformly
distributed on �0, +1�, representing producers of varying ef-
ficiency. In addition to the constraints on M mentioned
above, we require that producers always are the prey of con-
sumers. Thus, the case �I�0 and �J=0 with MIJ�−MJI
�0 is forbidden and is changed during setup of the matrix by
reversing the signs of the interactions for the pair in question.

For large positive �I �small birth cost, strong coupling to
the external resources, and more prey than predators�, the
individual almost certainly reproduces, giving rise to F off-
spring. In the opposite limit of large negative �I �large birth
cost, weak or no coupling to the external resources, and/or
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more predators than prey�, it almost certainly dies without
offspring. The nonlinear dependence of PI on �I thus limits
the growth rate of the population size, even under extremely
favorable conditions. It also sets a practical negative limit on
�I, below which conditions are so unfavorable that reproduc-
tion is virtually impossible. �A more general version of Eq.
�2�, in which population growth is directly limited by a “Ver-
hulst factor” �37� or “environmental carrying capacity” �38�
as is necessary in models that allow mutualistic interactions,
is discussed in Ref. �29�.� We note that “energy dissipation”
in this model is achieved through the birth costs bI and the
self-competition terms MII. Similar effects could have been
produced by making the positive MIJ smaller than the corre-
sponding negative ones by an “ecological efficiency” factor
between zero and unity, as in the Webworld model �8,14,15�.

The normalization of �I with Ntot implies global compe-
tition. This is not very realistic, but it enables us to find exact
expressions for the stationary values of the average popula-
tion sizes in the mutation-free limit. �See Sec. III A.� The
model can thus be used as a benchmark for more realistic
ones in future research.

An analytic approximation describing the development in
time of the mean population sizes �averaged over indepen-
dent realizations� 	nI�t�
 can be written as a set of coupled
difference equations

	nI�t + 1�
 = 	nI�t�
FPI„R,�	nJ�t�
�…�1 − ��

+ ��/L�F�
K�I�

	nK�I��t�
PK�I�„R,�	nJ�t�
�… , �3�

where K�I� is the set of species that can be generated from
species I by a single mutation �“nearest neighbors” of I in
genotype space�.

III. LINEAR STABILITY ANALYSIS

A. Fixed-point communities

An advantage of the model studied here is that its fixed-
point communities in the mutation-free limit can be found
exactly within a mean-field approximation based on Eq. �3�
�19�. To obtain a stationary solution for a community of N
species, we must require PI=1/F for all N species. Equa-
tions �1� and �2� then give rise to N linear relations, which
can be written on the matrix form

− �b̃
Ntot
* + ��
R + M̂�n*
 = 0, �4�

where b̃I=bI−ln�F−1�, �b̃
, ��
, and �n*
 are the column vec-

tors of b̃I, �I, and nI
*, respectively �in all cases including only

those N species that have nonzero nI
*�, and M̂ is the corre-

sponding N�N submatrix of M. �For simplicity, we drop
the 	 
 notation for the average population sizes, and the as-
terisk superscripts denote fixed-point solutions.�

The solution for �n*
 is

�n*
 = − M̂−1���
R − �b̃
Ntot
* � , �5�

where M̂−1 is the inverse of M̂. To find each nI
*, we must first

obtain Ntot
* �	1 �n*
, where 	1� is an N-dimensional row vec-

tor composed entirely of ones. Multiplying Eq. �5� from the
left by 	1�, we obtain

RE + 	Ntot
* = 0, �6�

where the coefficients

	 =
1 − 	1�M̂−1�b̃


	1�M̂−1�1

and E =

	1�M̂−1��


	1�M̂−1�1

�7�

have been written with 	1�M̂−1�1
 in the denominators in or-
der to remain finite even for near-singular M �29�. They can
be viewed as an effective interaction strength and an effec-
tive coupling to the external resource, respectively. The so-
lution of Eq. �6� is

Ntot
* = −

RE
	

=
R	1�M̂−1��


	1�M̂−1�b̃
 − 1
. �8�

To find each nI
* separately, we now only need to insert this

solution for Ntot
* in Eq. �5�.

Only those �n*
 that have all positive elements can repre-

sent a feasible community �39�. If M̂=0 or is otherwise sin-
gular, the set of equations �4� is inconsistent for N�1, un-

less b̃I and �I both are independent of I �this case is
equivalent to N=1�. The only possible stationary community
then consists of one single species, the one with the largest

value of �I / b̃I. This is a trivial example of competitive ex-

clusion �40–42�. If �I / b̃I has the same value for all N values
of I, we have an example of a neutral model �43�.

In Ref. �29� it was shown that Eq. �6� for fixed E and 	
can be seen as a maximization condition for a “community
fitness� function


�Ntot� = �1 −
1

F
�RENtot +

	

2
Ntot

2  . �9�

This result would not be particularly remarkable if E and 	
were externally fixed parameters. However, extinctions and
mutations provide a mechanism for both parameters to
change as old species go extinct and new species emerge. In
our numerical simulations we find that their values evolve
toward and then fluctuate around values that maximize 
,

limited only by the internal constraints on M and �b̃I
. In
particular, this means that 	 approaches closely to 0 from
the negative side �29�. In the simulations presented in this
paper �see Sec. IV� averages over the final communities of

12 independent simulation runs yield 	̄�−0.10±0.03 and

Ē�0.7±0.2, corresponding to Ntot
* ��7.4±1.4�R. In compari-

son, for 14 random, feasible communities obtained as de-
scribed in Sec. IV E 1 below, the corresponding parameters

are 	̄�−0.39±0.06 and Ē�0.66±0.08, corresponding to
Ntot

* ��2.0±0.3�R. A detailed discussion of the statistical
properties of these and other quantities characteristic of the
simulated communities are given in Sec. IV E 2.
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B. Stability of fixed-point communities

The internal stability of an N-species fixed-point commu-
nity is obtained from the matrix of partial derivatives

� �nI�t + 1�
�nJ�t�

�
�n*


= �IJ + �IJ, �10�

where �IJ is the Kronecker delta function and �IJ are ele-
ments of the community matrix � �38�. Straightforward dif-
ferentiation yields �29�

�IJ = �1 −
1

F
 nI

*

Ntot
* �MIJ −

R�I + �M̂�n*
�I

Ntot
* � , �11�

where �M̂�n*
�I is the element of the column vector M̂�n*
,
corresponding to species I. In order for deviations from the
fixed point to decay monotonically in magnitude, the magni-
tudes of the eigenvalues of the matrix of partial derivatives
in Eq. �10�, �+1, where 1 is the N-dimensional unit matrix,
must be less than unity. The value of the fecundity used in
this work, F=2, was chosen to satisfy this requirement for
N=1.

Since new species are created by mutations, we must also
study the stability of the fixed-point community toward “in-
vaders.” Consider a mutant invader i. Then its multiplication
rate, in the limit that ninJ for all N species J in the resident
community, is given by

ni�t + 1�
ni�t�

=
F

1 + exp�− �i�R,�nJ
*���

. �12�

The Lyapunov exponent ln�ni�t+1� /ni�t�� is the invasion fit-
ness of the mutant with respect to the resident community
�44,45�. It will be studied numerically in Sec. IV E 1.

IV. NUMERICAL RESULTS

We performed 12 independent, long simulation runs of
225=33 554 432 generations of the model with the following
parameters: genome length L=20 �1 048 576 potential spe-
cies�, external resource R=2000, and mutation rate �=10−3,
with connectance parameter c=0.1 and a proportion p
=0.05 of the potential species as producers. These param-
eters were chosen to represent the realistic situation that the
number of species resident in the community at any time is
much smaller than the number of potential species �i.e., that
N�t�2L�, and also that N�t�Ntot�t� so that at least one
species has a substantial population size. In this parameter
range the model is not very sensitive to the exact parameter
values �29�. We also note that the chosen connectance is
above the percolation limit on the L=20 dimensional cube of
potential genotypes �34,46�, so that a finite fraction of the
genotypes can be connected by mutations along paths of
nonzero interactions.

The very long simulation times were chosen because our
main interest is in the statistically stationary dynamics of
macroevolution over time scales much longer than the eco-
logical ones of a few generations. Each run therefore starts
with a “warm-up period� of about one million generations

before the 225-generation data-taking period. Details of the
simulation algorithm were given in Ref. �19�.

A. Time series and species abundance distributions

We collected time series of a number of quantities includ-
ing several measures of diversity or species richness, as well
as population sizes of producer and consumer species. Time
series of diversities and population sizes for one representa-
tive run are shown in Fig. 1.

In order to filter out noise from the small-population spe-
cies that are mostly unsuccessful mutants, we use the diver-
sity measure known in ecology as the exponential Shannon-
Wiener index �47�. It is defined as the exponential function
of the information-theoretical entropy of the population dis-
tributions D�t�=exp�S(�nI�t��)�, where

S„�nI�t��… = − �
�I��I�t��0�

�I�t�ln �I�t� , �13�

with �I�t�=nI�t� /Ntot�t� for the case of the curves labeled
“All species” in Fig. 1. For the producers or consumers, the
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FIG. 1. �Color online� Time series for the Shannon-Wiener di-
versity index �a� and the population sizes �b�. The jagged curves in
the background show data sampled every 2048 generations to show
the rapid fluctuations, while the curves in contrasting color �bright-
ness� in the foreground are running averages over 524 288 genera-
tions, emphasizing the slower fluctuations. The three sets of curves
represent all species �black/light gray; black/yellow online�, pro-
ducer species �light gray/dark gray; green/violet online�, and con-
sumer species �medium gray/light gray; red/cyan online�.
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sums and normalization constant include only the appropri-
ate species. The utility of the Shannon-Wiener index is illus-
trated by the data presented in Fig. 2. In Fig. 2�a� we show
two versions of the species abundance distribution �SAD� for
the model. This is one of the tools most widely used in
ecology to describe the distribution of the number of species
over population sizes �48�. The SADs shown as full lines in
the figure represent full communities, from which we have
only removed any consumer species that are not connected to
the external resource through an unbroken chain of nonzero
interactions. These we term “full connected communities”
�“full communities” for short�. �The removal of disconnected
consumer species actually has a numerically insignificant ef-
fect on the SADs.� The SADs for the full communities are
dominated by a large number of species with very small
populations, which to a large extent represent unsuccessful
mutants. This was explicitly shown by extracting “core com-
munities” in the following way. Communities were sampled

every 256 generations, and species with population sizes be-
low eight were excluded. It was then checked whether each
included species also existed with at least this minimum
population 256 generations ago, and if this was not the case,
the species was removed from the community as unstable.
The fixed-point populations for the community of remaining
species were then calculated according to Eq. �5�, species
with negative fixed-point populations �unfeasible species�
were removed, and the fixed-point calculation was repeated
until all species remaining in the community had positive
populations. The SAD was then calculated for each of these
feasible core communities and averaged over all communi-
ties in the 12 independent simulation runs. This procedure
removes most of the low-population species, as shown by the
dashed curves in Fig. 2�a�. The core-community SAD ap-
pears to be intermediate between Fisher’s log-series distribu-
tion �48,49� and Preston’s log-normal distribution �48,50�. It
can be semiquantitatively approximated by fitting the con-
stants C, �, and � in the function �51�

p�n� = C��n�−1e−�n/���� , �14�

which interpolates between these two limiting forms. The fit
is shown by the dash-dotted curve in the figure. Additional
evidence for the agreement between the Shannon-Wiener di-
versity index and the species richness of the core communi-
ties is shown in Fig. 2�b�, where histograms of the two are in
excellent agreement and both show a narrow peak near 15
species �mean values of 15.7 and 15.3 species, respectively�,
while the raw species richness yields a wide distribution with
a mean of 49.3 species. All three distributions are very well
fit by Gaussians and are much more symmetric than diversity
distributions arising from Rossberg et al.’s speciation model
of food webs �52�.

Time series of additional quantities that indicate the level
of evolutionary activity are shown in Fig. 3 for the same
simulation run as in Fig. 1. These are the magnitude of the
logarithmic derivative of the Shannon-Wiener diversity in-
dex �Fig. 3�a��, and the size of extinctions per generation
�Fig. 3�b��. The latter is defined as the sum of the maximum
population sizes reached by the species that go extinct in
each generation.

The properties of the fluctuations in the time series were
analyzed with several methods, including power spectral
densities �PSD�, lifetimes of individual species, and the du-
rations of quiet and active periods during the evolution. The
results of each are reported in the following subsections.

B. Power spectral densities

PSDs of the diversity and population-size fluctuations, av-
eraged over the 12 independent simulation runs, are shown
in Fig. 4, both for the total population and for the producers
and consumers, separately. The spectra indicate 1 / f-like
noise over more than five decades in time. A weighted fit to
the PSD for the overall diversity in Fig. 4�a� yields a power
law f−� with ��1.29±0.01. This power is also seen to fit
reasonably well, both with the data for the diversities of pro-
ducers and consumers over the whole frequency range in
Fig. 4�a�, and with the PSDs of all three population measures
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FIG. 2. �Color online� �a� Species abundance distributions
�SADs�, normalized to the number of species. Solid curves repre-
sent “full connected communities,” and dashed curves represent
“core communities,” both extracted as described in the text. Both
were sampled every 256 generations. The data were averaged over
12 independent simulation runs, and the error bars represent stan-
dard errors, based on the differences between runs. The dot-dashed
curve is a fit to the curve describing all core species, using Eq. �14�
with parameters C=13.569, �=0.002 109 67, and �=1.893 38, in-
terpolating between log-series and log-normal forms. �b� Histo-
grams of the full-community species richness, the species richness
of the core communities, and the Shannon-Wiener diversity for the
sampled communities. The latter is seen to be an excellent approxi-
mation for the species richness of the core communities.
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at low frequencies in Fig. 4�b�, as well as for the extinction
measures at low frequencies in Fig. 4�c�. This suggests that
the long-time fluctuations in the diversity, as well as in the
population sizes and the extinction measures, obey the same
power law on long time scales. On short time scales the
PSDs for the population sizes have a more complicated
structure, possibly indicating overdamped oscillations on a
scale of a few hundred generations. The extinction measures
show a wide region of white noise for high frequencies, due
to the frequent extinction of unsuccessful mutants. However,
the behaviors for low frequencies appear consistent with the
diversities and the population sizes.

C. Species lifetimes

The statistics of the lifetimes of individual species are
characteristic of the evolution process. The species lifetime
is defined as the time from a particular species enters the
community, until it goes extinct �i.e., its first return time to
zero population size�. Histograms showing the distributions
of species lifetimes, for all species as well as for producers
and consumers separately, are shown in Fig. 5. Although
there are some undulations in these curves, they remain close

to a power law t−�1 with exponent �1�2 over more than six
decades in time, which is the maximum we could expect
with the length of our simulations.

The t−2 dependence of the lifetime distributions is quite
universal. It is found, e.g., in our previous studies of the
mutualistic model �21,28,29�, and it is in general character-
istic of stochastic branching processes �53�.

Lifetime distributions for marine genera that are compat-
ible with a power-law exponent in the range −1.5 to −2.5
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FIG. 3. �Color online� Time series for the same simulation run
shown in Fig. 1, displaying quantities that measure the evolutionary
activity: the magnitude of the logarithmic derivative of the
Shannon-Wiener diversity index �dS /dt� �averaged over 16 genera-
tions� �a�, and the size of extinctions per generation �b�. The hori-
zontal lines in each part �solid, long-dashed, and short-dashed� in-
dicate different cutoff levels used to define quiet and active periods
as discussed in Sec. IV D.
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FIG. 4. �Color online� PSDs for the Shannon-Wiener diversities
�a�, population sizes �b�, and the extinction sizes and number of
species going extinct per generation �c�, all averaged over 12 inde-
pendent runs of 225 generations. The error bars are standard errors,
estimated from the variations between the individual runs. The
dashed straight line with slope −1.29 in �a� is a weighted fit to the
PSD for the overall diversity over the whole frequency range. The
dashed straight lines in �b� and �c� are guides to the eye with the
same slope.
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have been obtained from the fossil record �3–5�. However,
the possible power-law behavior in the fossil record is only
observed over about one decade in time—between 10 and
100 million years—and other fitting functions, such as expo-
nential or log-normal, are also possible. Nevertheless, it is
reasonable to conclude that the numerical results obtained
from complex, interacting evolution models that extend over
a large range of time scales support interpretations of the
fossil lifetime evidence in terms of nontrivial power laws.

D. Quiet and active periods

From the time series shown in Figs. 1 and 3 one sees that
periods of moderate fluctuations are punctuated by periods of
high activity. The communities corresponding to the lower
fluctuation intensities are known as quasisteady states �QSS�.
�In the literature on the tangled-nature model �16–18� the
QSS are referred to as quasievolutionarily steady strategies,
or q-ESS.� The cores of these communities correspond to the
fixed-point communities of the mutation-free system �19,20�,
as discussed in Sec. IV A. One measure of the degree of
activity is the time derivative of the entropy or, equivalently,
the logarithmic derivative of the total Shannon-Wiener diver-
sity. Its magnitude is shown as a time series in Fig. 3�a�, and
a histogram is shown in Fig. 6�a�. While the central part of
the distribution is well approximated by a Gaussian, the
heavier wings appear to be exponential or even power law.
Quiet and active periods were defined as contiguous periods
during which �dS /dt� stayed below or above a cutoff yc, re-
spectively. Octave-binned histograms for the probability dis-
tributions of the durations of quiet and active periods are
shown in Fig. 6�b� for various cutoffs. For the quiet periods
a power law is seen with exponent near −1 �a weighted
fit between 10 and 106 generations gives t−� with �
�1.07±0.01� and a long-time cutoff that increases with in-
creasing yc. The active periods for all values of yc are very
brief in comparison. �Their histogram for yc=0.010 is the
steep curve with only three data points between 10 and 100
generations in Fig. 6�b�.� As a consequence, the system
spends most of its time in QSS communities—a situation

consistent on the community level with Eldredge and
Gould’s concept of punctuated equilibria �54–56�.

Durations of quiet periods could also be obtained from the
time series of extinction sizes in Fig. 3�b�. Due to the white
noise at short time scales, which was also apparent in the
PSDs in Fig. 4�c�, the power-law behavior is limited to a
window of longer times between about 1000 generations and
the strongly cutoff-dependent long-time decay. As a result,
this quantity does not provide as clear a quiet-period distri-
bution as the entropy derivative. We therefore did not per-
form any independent fit to obtain a power-law exponent for
the QSS durations measured this way �see Fig. 7�. The decay
with time is qualitatively consistent with that observed in
Fig. 6�b� for the QSS duration distributions based on �dS /dt�.

It is quite remarkable that the exponent for the QSS du-
rations is significantly different from the one for the species
lifetimes, which is close to 2. This is particularly so because
the two exponents appear to be approximately the same �both
near 2� for the mutualistic version of the model �21,28,29�.
We believe that the explanation lies in the structure of the
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FIG. 6. �Color online� �a� Histogram of the logarithmic deriva-
tive of the overall diversity dS /dt. The data were averaged over 16
generations for each run and then over 12 independent runs. The
dashed curve is a Gaussian fit. The time series of the magnitude of
this quantity for one particular simulation run is shown in Fig. 3�a�.
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QSS communities generated by the present evolution pro-
cess, which take the form of simple food webs. These are
studied in Sec. IV E below.

E. QSS community structure and stability

1. General considerations

The evolution process in the present model generates dy-
namic communities, in which species emerge, exist for a
shorter or longer time, and eventually go extinct. The emer-
gence and extinction of a major species are quite fast pro-
cesses on the evolutionary time scale, and so the vast major-
ity of randomly selected communities are QSS communities.
This is confirmed by the short durations of evolutionarily
active periods, shown by the corresponding histogram in Fig.
6�b�. Diagrams of the population sizes of major producer and
consumer species as functions of time in a particular simu-
lation run are shown in Figs. 8�a� and 8�b�, respectively. In
these figures a horizontal line represents a species. The be-
ginning of the line represents the emergence of the species,
and the end represents its extinction. The population size is
represented by the color. We see that some species persist for
tens of millions of generations, while others are so short-
lived as to hardly be visible on the scale of these figures.
This is consistent with the power-law behavior of the
species-lifetime distribution �see Fig. 5�. We also see that
producer species appear to emerge and go extinct relatively
independently of each other, while there is a significant cor-
relation between the producer and consumer species. This
correlation indicates that extinction of a producer species is
likely to trigger a �limited� cascade of consumer extinctions.
Conversely, a new producer species is likely to quickly ac-
quire a group of consumer species. The structure of the plots
in Fig. 8 contrasts with that of similar plots for the mutual-
istic model of Ref. �19� �see Fig. 2 of that paper�, in which
species tend to emerge as well as go extinct together. We
believe this is the reason for the difference between the ex-
ponents for the species lifetimes and the durations of QSS

communities in this model: the overall community is rela-
tively resilient toward losing or gaining a single species
�8,35,57,58�. As a community it is more long-lived than the
individual species, leading to the smaller value for the expo-
nent of the distribution for the QSS durations �compare Figs.
5 and 6�b��. �A similar relationship has been noted between
the lifetimes of orders and their constituent genera in the
fossil record �5�.�

Three representative QSS core communities from the
same simulation run shown in Figs. 1, 3, and 8 are shown in
Fig. 9. These are consecutive core communities near 22
�106, 27�106, and 34�106 generations, respectively, and
they are all stable by the eigenvalue criterion discussed in
Sec. III B. The communities take the form of simple food
webs with two trophic levels above the resource node. Com-
munities with three trophic levels are also occasionally ob-
served. The different branches of the webs are relatively in-
dependent of each other, and many consumer species have
more than one prey. �See further quantitative discussion in
Sec. IV E 2.� Both features contribute to the resilience
against mass extinctions discussed above.

The relative stability of evolved QSS core communities
with respect to invasion by mutants is illustrated in Fig. 10.
The results are averaged over 14 QSS core communities—
the three shown in Fig. 9 plus the final communities of the 11
other simulation runs. This figure shows the multiplication
ratio of a small population of invaders �the exponential func-
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FIG. 7. �Color online� Histograms of the durations of quiet pe-
riods, obtained from the time series of extinction sizes, an example
of which is shown in Fig. 3�b�. Data averaged over 12 independent
simulation runs. The straight, dashed line with slope −1.07 is a
guide to the eye, based on the fit to the QSS duration distribution
based on �dS /dt�, shown in Fig. 6�b�.

FIG. 8. �Color online� Major populated species shown vs time
for the same simulation run shown in Figs. 1 and 3. The horizontal
lines correspond to the species label, and the gray scale �color on-
line� to the population size. Black: nI�1000. Gray �red online�:
nI� �101,1000�. �a� Producers. �b� Consumers.
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tion of the invasion fitness�, given by Eq. �12�. Only about
2.3% of species outside the communities have multiplication
ratios larger than unity, and most of these lie between 1.0 and
1.1. This percentage does not seem to depend significantly
on the Hamming distance of the invader from the commu-
nity. We note that the species that are removed from the
community during extraction of the core community are
among these low invasion fitness species. This is a further
indication that the difference between core and full commu-
nities is mostly made up by unsuccessful mutants.

We also tested if the evolved core communities are more
resilient toward invasion than randomly constructed feasible
communities. Such communities are more difficult to con-
struct in this model, than in the mutualistic model �19�. To
have the same level of statistics as for the QSS communities,

we produced 14 such communities in the following way. We
started a run with a random sample of 200 species, each with
nI=10, and evolved the community for 1024 generations
without mutations. We then tested the remaining community
for feasibility and removed species with a negative stationary
population according to Eq. �5�. The resulting feasible com-
munities had much smaller diversities than the evolved QSS
communities—an average of only 3.6 species per commu-
nity. These communities had a significantly larger percentage
of potential invaders—about 4%, with a maximum multipli-
cation ratio near 1.7 �see the inset in Fig. 10�. While there
thus is a clear difference between the stability against invad-
ers of QSS communities and random feasible communities,
the difference is not as large as it is for the mutualistic model
of Ref. �19�. �See Fig. 3 of that paper.�
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FIG. 9. �Color online� Food webs representing QSS core communities for the simulation shown in Figs. 1, 3, and 8 at times near
22�106 generations �a�, near 27�106 generations �b�, and at the end of the simulation near 34�106 generations �c�. The core communities
were identified as described in Sec. IV A. The thickness and head size of the arrows correspond to the magnitude of MIJ, and the area of the
circles to the stationary population size, as calculated analytically from Eq. �5�. Light gray �red online� lines without arrowheads connect
nearest neighbors in genotype space. Species No. 609477 �label medium gray, red online� persists from the first to the last snapshot, �a� to
�c�. Species No. 682497, No. 681473, and No. 943617 �labels dark gray, blue online� persist from �a� to �b�, while species No. 85703 �label
light gray, green online� persists from �b� to �c�.
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2. Detailed community structure and comparison
with real food webs

Next we turn to a detailed statistical description of the
QSS core and full connected communities identified in Sec.
IV A. Since communities were extracted every 256 genera-
tions from 12 independent runs of 225 generations each, data
were averaged over 131 072�12 communities of each type.
However, due to the long-time correlations in the evolution
process, many of the communities from the same run are
identical or similar. This sampling method thus ensures that
the statistics for both communities and individual species are
weighted according to their longevities. First we consider the
properties of individual species, and next we turn to the col-
lective properties of the corresponding food webs and a com-
parison with data for real food webs.

The individual species are characterized by the birth cost
bI, the self interaction MII, and for producers by the resource
coupling �I. In the total pool of potential species these are
uniformly distributed on �0, +1�, �−1,0�, and �0, +1�, re-
spectively. Not surprisingly, the most prevalent species in the
core communities turn out to be the most “individually fit”
ones in the sense that they have low birth cost and, for pro-
ducers, relatively strong coupling to the external resource.
The resulting probability densities for bI and �I are shown in
Fig. 11. The selection for low birth cost is very strong for
members of the core communities, and less so when the full
communities are considered. This is further indication that
the species that are ignored when extracting the core com-
munities have higher bI, and thus overall are less individually
fit than the core species. On the other hand, the moderate
selection for strong coupling to the external resource �large
�I� is approximately equal for producers in both types of
communities. In contrast, the self interactions appear to be
evolutionarily neutral, and their probability density remains

approximately uniform for the members of both core and full
communities �not shown�.

The first community-level quantities we consider are the
nonzero interspecies interaction strengths �MIJ�. Histograms
for these, based on the same sampling and averaging as pre-
vious results, are shown in Fig. 12�a�. The distribution for
the core communities is significantly skewed toward strong
interactions, compared to the triangular distribution charac-
teristic of the total species pool, which is shown as a dashed
line. The bias is much weaker when all members of the full
communities are considered. �See the Appendix for a discus-
sion of the unbiased distribution.�

The biased distribution of interaction strengths combines
with the strongly skewed distributions of bI and �I to pro-
duce values of the effective interaction strength 	 and effec-
tive resource coupling E for the core communities �defined in
Eq. �7�� that are in excellent agreement with the expectations
expressed in Sec. III A. As shown in Fig. 12�b�, 	 is nar-

rowly distributed closely below 0 �	̄=−0.10�, while E has a

broader distribution over positive values with mean Ē=0.71.
These averages are in excellent agreement with those ob-
tained from the final communities of the 12 runs, discussed
in Sec. IV A.

Next we consider several quantities from network theory
that can be compared with data from real food webs. These
include the directed connectance C=L /S2, where L is the
number of links �i.e., the number of nonzero MIJ ,MJI pairs�
and S is the diversity �here defined as the species richness�,
the linkage density z=L /S=CS, the probability distributions
of a species’ number of prey species �its generality or inde-
gree�, number of predator species �its vulnerability or outde-
gree�, and their sum �its total degree� �52�.

For comparison with the simulated food webs generated
by our evolutionary model, we use data for 17 empirical
webs, including both aquatic and terrestrial communities.
These data sets were kindly provided to us by J. A. Dunne.
Tabular overviews of the parameters characterizing these
communities are available in the literature �35,59,57,60�. For
all the empirical webs we defined the diversity as the species

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
n

i
(t+1)/n

i
(t) for invaders

0

0.5

1

1.5

2

2.5

3

H
is

to
gr

am
s

QSS, Nearest neighbors
QSS, All species
Random feasible community

1 1.2 1.4 1.610
-6

10
-5

10
-4

10
-3

10
-2

10
-1

FIG. 10. �Color online� Histograms of the multiplication ratio
ni�t+1� /ni�t� �exponential of the invasion fitness, Eq. �12�� for low-
density invaders. Each curve is averaged over 14 different core
communities. Black: nearest neighbors in genotype space against
stable QSS communities. Dark gray �red online�: All species not in
the community against stable QSS communities. Light gray �orange
online�: All species not in the community against random feasible
communities. Inset: The part of the distributions for potentially suc-
cessful invaders ni�t+1� /ni�t��1 with the y axis on logarithmic
scale. The tails appear nearly exponential.

0 0.2 0.4 0.6 0.8 1
b

I
and ηΙ

0.1

1

10

H
is

to
gr

am
s

b
I
, Core communities

η
I
, Core communities

Uniform distribution
b

I
, Full connected

η
I
, Full connected

FIG. 11. �Color online� Log-linear plot of histograms of the
birth cost bI �peaked to the left� and producer coupling to the ex-
ternal resource �I �peaked to the right�, for members of QSS core
communities �shaded areas� and full communities �lines only�. Both
parameters are selected away from the uniform distributions of the
full species pool �horizontal dashed line�.

PER ARNE RIKVOLD AND VOLKAN SEVIM PHYSICAL REVIEW E 75, 051920 �2007�

051920-10



richness S in terms of trophic species. These are obtained by
lumping together all taxa that share all their predators and
prey �59,61�. Like the simulated communities analyzed, the
empirical webs contain no disconnected species or subwebs
�59�. The included empirical food webs are Coachella Valley
�62�, El Verde Rainforest �63�, Scotch Broom �64�, St. Mar-
tin Island �65�, and U.K. Grassland �66� �terrestrial�; Bridge
Brook Lake �67�, Little Rock Lake �68�, and Skipwith Pond
�69� �lake or pond�; Canton Creek �70� and Stony Stream
�70� �stream�; Chesapeake Bay �71�, St. Mark’s Estuary �72�,
Ythan Estuary �73�, and Ythan Estuary with parasites �74�,
�estuaries�; Benguela �75�, Caribbean Reef—small �76�, and
northeastern U.S. continental shelf �77� �marine�.

As discussed above, the food webs produced by the evo-
lutionary process in this model are relatively small, with av-

erage diversity S̄�15 for the QSS core communities and
approximately 50 for the full communities. As seen in Fig.

13, the directed connectance C is somewhat smaller �C̄
�0.08 for core and C̄�0.06 for full communities� than the
input connectance c=0.1. However, this is partly because it
is calculated in the conventional way as L /S2 �52�, rather
than as L /S�S−1�. The average linkage density is also quite
small �z̄=1.17 for core and z̄=2.58 for full communities�
compared to most of the real food webs that have been docu-
mented. For comparison, the 17 documented food webs have

S̄�69 with a range from 25 to 155, C̄�0.13 with a range

from 0.03 to 0.32, and z̄�6.9 with a range from 1.6 to 17.8.
However, Williams and Martinez’ niche model for food-web
structure �61� leads to a scaling hypothesis for the degree
distributions �exact for the niche-model prey distribution and
approximate for the predator distribution� �78–80� as fol-
lows:

2zp�k� = p̃k�k/2z� , �15�

where k can be either the generality, the vulnerability, or the
total degree �with different scaling functions p̃ for each�. As
a consequence, cumulative degree distributions can also be
rescaled by simply dividing the argument by 2z. Using this
niche-model result as a general scaling hypothesis �52�, we
can compare the degree distributions for the communities
generated by our model with scaled data for the seventeen
real food webs.

The degree distributions for the model, individually nor-
malized for each community, and then averaged over all
communities, are shown in unscaled form in Figs. 14�a� and
14�b�. As seen from the insets, all three distributions �prey,
predators, and total degree� decay at least exponentially for
large argument. This property is shared by most real food
webs �59� and models �52,79–81� and indicates that food
webs in general are not scale-free networks. The behavior for
k�2z is more model and system dependent.

Histograms for the correlations between a species’ gener-
ality and vulnerability are shown in Fig. 14�c�, together with
data for the 17 real food webs. The average correlation co-
efficients are −0.53 for core communities and −0.40 for full
communities, more negative than, but not inconsistent with,
the real food-web average of −0.23.

Due to the relatively small size of the empirical food
webs, it is difficult to extract information from scaled prob-
ability densities, which will include empty bins unless a very
large bin size is chosen. This problem is avoided by instead
studying the cumulative distribution P�x�=Prob�k / �2z��x�
�59�. These are shown in Fig. 15 for the 17 empirical webs,
together with averaged results for the empirical webs and the
model. The averaged curves were generated by first scaling
the degrees �predators, prey, and total� for each web by the
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value of 2z for that particular web, binning the results in bins
of width 0.2, and normalizing the binned histogram by the
species richness S of that same web. The individually scaled,
binned, and normalized histograms were then averaged over

all webs �seventeen for the empirical webs and 131 072
�12 for the model webs� and finally integrated to produce
the average scaled cumulative distributions. For the model,
results are shown both for the full and core communities.

Despite their smaller average diversity and linkage den-
sity, the scaled cumulative degree distributions for both types
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FIG. 14. �Color online� �a� Unscaled degree distributions for the
QSS core communities, showing the number of prey �solid�, the
number of predators �dashed�, and the total degree �dot-dashed�.
The distributions were individually normalized for each community,
and then averaged over all communities. The error bars are standard
errors, based on the spread between the 12 simulation runs. Average
linkage density is z̄=1.17. The inset on log-linear scale shows that
these distributions decay at least exponentially with increasing ar-
gument. �b� Same as �a�, for the full communities. Average linkage
density is z̄=2.58. �c� Histograms over individual sampled commu-
nities of the correlation coefficient between a species’ number of
predators and prey. Black filled with light gray �yellow online�:
QSS core communities. Medium gray �red online�: full, connected
communities. Dark gray �blue online� with drop lines: empirical
data for seventeen natural food webs.
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FIG. 15. �Color online� Scaled, cumulative degree distributions
for the model, compared with results for the 17 empirical food
webs. Data for individual, real food webs are shown in the back-
ground as isolated data points. Average data for the simulated and
real webs are shown as data points with error bars indicating stan-
dard error, connected by heavy lines. Dark gray with circles �blue
online�: simulated core communities. Medium gray with squares
�red online�: simulated full communities. Black with diamonds: em-
pirical communities. Details of the averaging are discussed in the
text. �a� Number of predators �vulnerability, or outdegree�. �b�
Number of prey �generality, or indegree�. �c� Number of predators
plus prey �total degree�.
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of model communities, which are shown in Fig. 15, fall well
within the range of the empirical data. For scaled degrees
below about 1.5, the averaged distributions for the core com-
munities are in quite reasonable agreement with those for the
empirical food webs. The largest deviations are for total de-
gree �Fig. 15�c�� at small values of the scaled argument. This
is possibly due to the significantly stronger negative correla-
tions between the numbers of predators and prey �vulnerabil-
ity and generality� for species in the model communities,
compared to the empirical ones �see Fig. 14�c��. For scaled
degrees above approximately 1.5, the averages for the em-
pirical webs are significantly above those for the model webs
and appear approximately exponential in the tail �see the
insets in Fig. 15�. We note, however, that this behavior in the
averages is caused by a small number of webs; the remaining
empirical webs have no species of such highly above-
average degrees. Overall, the scaled, cumulative distributions
for the present model agree with the empirical data to about
the same degree as the niche model �78� and the speciation
model of Rossberg et al. �52,82�. However, it must be admit-
ted that much potentially valuable detail about the food-web
structure is lost in calculating the cumulative distributions.

A measure of the hierarchical structure of a food web is
given by the proportions of basal species �species with no
prey, supported only by the external resource�, intermediate
species �that have both prey and predators�, and top species
�that have no predators�. As seen from the histograms in Fig.
16, there are wide variations from community to community
for each class of species. The high proportion I of interme-
diate species seen for the full communities in Fig. 16�b� �I
=0.76� is consistent with most of the real food webs ana-
lyzed, including Caribbean Reef �I=0.94�, U.S. Shelf �I
=0.94�, Benguela �I=0.93�, Scotch Broom �I=0.92�, Skip-
with Pond �I=0.92�, Coachella Valley �I=0.90�, Little Rock
Lake �I=0.86�, El Verde Rainforest �I=0.69�, St. Marks
Seagrass �I=0.69�, St. Martin Island �I=0.69�, and
Bridge Brook Lake �I=0.68�, as well as simulations of the
Webworld model �60� and mean-field analysis of a Lotka-
Volterra predator-prey model with evolution and competition
�83�. The core communities, on the other hand, have their
member species much more evenly distributed among the
three classes, as shown in Fig. 16�a�. Real food webs with
more even distributions are Canton Creek �B=0.53, I=0.22,
T=0.25�, Stony Stream �B=0.56, I=0.27, T=0.17�, and
Chesapeake Bay �B=0.16, I=0.52, T=0.32�. Thus, at least in
this model, and somewhat counterintuitively, on average the
intermediate species are both the least stable and the most
numerous.

We conclude these comparisons of the structures of food
webs evolving in the present model to data for real food
webs with some words of caution. The model was primarily
developed to study the long-time temporal fluctuations in
diversity and population size, and it was in no way tuned to
produce realistic community structures except insofar as they
are generally food-web-like. This community structure does,
however, have profound effects on the dynamics, as it is
responsible for the difference between the power-law expo-
nents for the lifetimes of species and communities in this
predator-prey model. One should also note that, while the

lack of correlations between the properties of closely related
species was shown to have little effect on the long-time dy-
namics �21�, we have not considered whether such correla-
tions might affect the detailed community structure. Most
likely they would, at least to some degree. In addition, the
growth of real food webs involves a number of mechanisms,
besides just evolution and local population dynamics. Most
notably, immigration plays an important role in the occur-
rence of new members of a spatially localized community.
However, due to the large differences between parent species
and mutants in the current model, our evolution mechanism
may also be seen as covering immigration.

We also note that the simulated communities have signifi-
cantly smaller diversities, connectances, linkage densities,
and population sizes than the real communities, so that our
comparisons had to rely heavily on scaling arguments. It
would therefore be desirable in future studies to increase the
connectance, number of potential species, and resource size
to bring the results closer to the realistic range.
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FIG. 16. �Color online� Histograms for the proportions of basal,
intermediate, and top species. Basal: thin black line filled with light
gray �yellow online�. Intermediate: line of intermediate thickness
and gray scale �red online� without filling. Top: thick, dark gray
�blue online� line without filling. The vertical, dashed lines in
matching gray scale �color� and thickness represent the mean pro-
portion for each class. �a� Core communities. Mean proportions:
0.33 for basal, 0.31 for intermediate, and 0.38 for top species. �b�
Full communities. Mean proportions: 0.14 for basal, 0.76 for inter-
mediate, and 0.13 for top species.
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V. SUMMARY AND CONCLUSIONS

In this paper we have studied in detail an individual-based
predator-prey model of biological coevolution, based on the
simplified version of the tangled-nature model �16–18� that
was introduced in Ref. �19�. Selection is provided by a
population-dynamics model in which the reproduction prob-
ability of an individual of a particular species depends non-
linearly on the amount of external resources and on the
population densities of all other species resident in the com-
munity. New species appear in the community through point
mutations in a genome consisting of a string of L bits.

In the mutation-free limit, the mean fixed-point popula-
tion sizes and stability properties of any N-species commu-
nity can be obtained exactly by linear stability analysis.
While the universal competition effect that enables this ana-
lytical treatment is not very realistic, the exact solutions
make the model ideal as a benchmark for more realistic, but
also more complicated, models. A preliminary discussion of
two more realistic models is found in Ref. �84�.

In the simulations presented here, we used L=20 for a
total of 220=1 048 576 potential species. In order to study the
statistically stationary properties of the model, we performed
long kinetic Monte Carlo simulations over 225=33 554 432
generations. By studying the stationary fluctuations we hope
in the future to gain an understanding of the system’s sensi-
tivity to external perturbations in a way analogous to the
fluctuation-dissipation relations of equilibrium statistical me-
chanics �30�.

Qualitatively, many of the statistical properties of this
model are similar to those of the related, mutualistic model
studied in Refs. �19–21�. These include approximate 1/ f
noise in power spectra �PSDs� of diversity and population
sizes �f−� with ��1.29�, and power-law distributions for the
lifetimes of individual species, as well as of the durations of
evolutionarily quiet periods, corresponding to QSS commu-
nities. However, in contrast to the mutualistic model, the
power-law exponents for the species lifetimes and QSS du-
rations are different: t−�1 with �1�2 for the former �consis-
tent with a stochastic branching process �53�� and t−� with
��−1.07 for the latter. In Ref. �28� it was speculated that the
exponent values �=1, �1=2, and �=1 are consistent with
predictions for a zero-dimensional extremal-dynamics model
�85,86�. However, this speculation is not consistent with the
presumably more accurate estimate for � presented here, and
it seems advisable to be rather skeptical about any mapping
of the current model onto a simple statistical-mechanical
extremal-dynamics model.

It is probably more fruitful to consider why �1 and � are
different for the current predator-prey model, while they co-
incide for the corresponding mutualistic model. Here we be-
lieve the answer lies in the different community structures in
the two models. While communities in the mutualistic model
are tightly knit with all positive interactions �see Fig. 10 of
Ref. �29��, the communities in the present predator-prey
model take the form of simple food webs, which are much
more resilient toward the loss of a single or a few species. In
this sense, this predator-prey model is in much better agree-
ment with real food webs than the mutualistic model
�8,35,57,58�.

Our comparisons of the structure of the communities gen-
erated by our model with real food webs show both similari-
ties and differences. A difficulty with such comparisons is the
large differences in diversity and linkage density between the
simulated and real webs, which necessitated heavy use of
scaling arguments in the quantitative comparisons. For com-
parison of detailed community properties, simulations of
models with higher diversity and connectance are therefore
desirable in the future. Nevertheless, our model presents a
synthesis of long-term evolutionary dynamics and food-web-
like communities within an individual-based framework of
integrated population dynamics and evolution, that should
provide a sound basis for more refined models in the future.
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APPENDIX: MATRIX ELEMENTS
FOR LARGER GENOMES

Here we describe an improved version of the method in-
troduced by Hall et al. �16,17� to produce pseudorandom
matrix elements MIJ for values of L that are too large for the
full 2L�2L matrix M to fit into computer memory. This
method permits the matrix elements for a given community
to be generated and retained only as needed. We first present
the method of Hall et al., point out some problematic fea-
tures, and then present our modifications. �Both methods
generate nonsymmetric, pseudorandom matrices. However,
for the predator-prey system studied in the present paper,
only the upper triangle is used.�

Let S�I� be the string of binary digits corresponding to the
decimal species label I. This bit string has length L, so there
are 2L different strings. To generate the matrix element MIJ,
one first generates a new string of the same length S�I ,J�
=S�I�XORS�J�, where XOR is the logical exclusive or opera-
tor. From this bit string is generated the corresponding new
decimal index K(S�I ,J�). Next one creates two one-
dimensional arrays X and Y, each of 2L random numbers
between −1 and +1. �For simplicity let the starting index for
the arrays be zero.� Since S�I ,J� is symmetric in I and J,
asymmetric pseudorandom matrix elements are generated as

MIJ = �X�K„S�I,J�…� + Y�J��/2. �A1�

�Hall et al. instead use the product of the two random num-
bers, which gives a pseudorandom number with a slightly
different distribution.�

The problem with this method is that it produces strong
correlations along the columns of M since the second of the
two random numbers that produce MIJ is the same for all I at
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the same J. In Fig. 17�a� we show the resulting correlation
function for this scheme as a function of the Hamming dis-
tance between the pairs of bit strings involved in two differ-
ent matrix elements. Regardless of L, significant correlations
are seen for Hamming distances less than five. A discussion
of how to calculate such correlation functions is found in
Ref. �21�.

To reduce these correlations between matrix elements in-
volving closely related genotypes, we here modify the
scheme as follows. We extend array Y to a length of 3�2L

and define MIJ as

MIJ = �X�K„S�I,J�…� + Y�K„S�I,J�… + 2�J + 1���/2.

�A2�

The addition of K(S�I ,J�) in the index of Y ensures that the
matrix element depends in an erratic fashion on both I and J,
while the term linear in J ensures that M is not symmetric.
The resulting correlation function is shown in Fig. 17�b�. The
correlations for elements involving closely related genotypes
are strongly suppressed. The correlations for a Hamming dis-
tance of 2L, which are present in both schemes, are of little
practical significance. They are caused by the fact that the
XOR operation is invariant under simultaneous bit reversal in
both its arguments and could be removed by adding a linear
function of I in the argument of X. The probability density
for MIJ is triangular as expected from simple analytical ar-
guments, and the whole interval from −1 to +1 is well
sampled, even for relatively small L. This is shown in Fig.
18.

A connectance c� �0,1� for the off-diagonal matrix ele-
ments is easily implemented by generating two integer vec-
tors of length 2L, Ivec and Jvec. In each vector the ele-
ments are 1 with probability �c and 0 otherwise. MIJ is
chosen nonzero if and only if Ivec�I�Jvec�J�=1.
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